УТВЕРЖДАЮ:
И.о. ректора РГГМУ
к.юр.н., доцент
В.Л. Михеев
20 ноября 2015 г.

ЗАКЛЮЧЕНИЕ

федерального государственного бюджетного образовательного учреждения высшего профессионального образования «Российский государственный гидрометеорологический университет» (РГГМУ)

Диссертация «Использование математических моделей переноса и рассеяния радионуклидов в атмосфере для управления рисками на стадии проектирования атомных электростанций» выполнена на кафедре климатологии и охраны атмосферы в РГГМУ.

Соискатель Харченко Евгения Владиславовна закончила в 2001 г. Санкт-Петербургский Политехнический Университет Петра Великого, технический факультет, по направлению «Техническая физика». С 2002 г. по настоящее время работает в АО «Атомпроект». С апреля по декабрь 2012 г. инженер-исследователь РГГМУ. С 2012 по 2015 годы обучалась в заочной федерального государственного бюджетного образовательного аспирантуре учреждения высшего профессионального образования «Российский государственный гидрометеорологический университет». Удостоверение № 46 об окончании аспирантуры и сдаче кандидатских экзаменов выдано 18.11.2015 г. федеральным государственным бюджетным образовательным учреждением высшего профессионального образования «Российский государственный гидрометеорологический университет». Научный руководитель профессор Гаврилов А.С. до 25.05.2015г работал в качестве заведующего кафедрой климатологии и охраны атмосферы РГГМУ, в настоящее время на должности профессора кафедры.

В результате обсуждения представленной автором к защите работы было принято следующее заключение.

Диссертация Харченко Е.В. является законченной, самостоятельно выполненной научно-исследовательской работой, посвященной созданию новых методов расчета экстремальных характеристик радионуклидного загрязнения окружающей среды от возможных аварийных выбросов атомных электростанций.

В диссертации Е.В Харченко получены следующие результаты, выносимые на защиту:

1. метод восстановления вертикальной структуры атмосферного пограничного слоя над территорией проектируемой промышленной площадки АЭС с использованием лишь данных стандартных гидрометеорологических измерений на метеостанции и данных реанализа скорости ветра и температуры на стандартных изобарических поверхностях;

- 2. метод параметризации застройки в стандартной гауссовой модели МАГАТЭ применительно к расчету характеристик рассеяния радионуклидов в окрестности АЭС;
- 3. метод, результаты и погрешности расчета максимальных значений факторов разбавления/осаждения высокой процентной обеспеченности (до 99.5%), закладываемых в проектные решения по безопасности АЭС.

<u>Научная обоснованность и достоверность результатов</u> определяется использованием современных методов численного моделирования атмосферных процессов, обоснованием точности получаемых результатов на основе многоступенчатого тестирования алгоритмов, а также результатами верификации на экспериментальном материале.

Достоверность работы подтверждена результатами экспертизы реализующих разработанные методы программных средств в НТЦ ЯРБ при Ростехнадзоре РФ, в частности:

- ПС "RiskZone v.1.0" (аттестационный паспорт № 368 от 18.03.2015 г.);
- ПС «ДОЗА 3.0» (аттестационный паспорт № 338 от 12.09.2013 г.).

Научная новизна работы обусловлена следующим.

- 1. Впервые разработана и практически реализована методика восстановления вертикальной структуры атмосферного пограничного слоя над территорией проектируемой промышленной площадки АЭС с использованием лишь данных стандартных гидрометеорологических измерений на метеостанции и данных реанализа скорости ветра и температуры на стандартных изобарических поверхностях.
- 2. Впервые cиспользованием физически содержательной 3Dгидродинамической модели промышленной зоны с учетом особенностей каждого отдельно стоящего здания с привлечением в качестве краевых АПС, предварительно восстановленной структуры разработана параметризации застройки в стандартной гауссовой модели применительно к расчету характеристик рассеяния радионуклидов газоаэрозольных аварийных выбросов в окрестности АЭС;
- Впервые на основе рядов расчетных значений 3. характеристик рассеяния радионуклидов В окрестности АЭС разработан И реализован факторов статистический метод расчета максимальных значений 99.5%), разбавления/осаждения высокой процентной обеспеченности закладываемых в проектные решения по безопасности АЭС.

Практическая значимость работы заключается в следующем.

На основе разработанных и верифицированных алгоритмов расчета удается проектные задачи получения максимальных значений факторов разбавления/осаждения высокой процентной обеспеченности ДЛЯ вновь создаваемых АЭС на территориях, где отсутствуют накопленные данные о вертикальной структуре нижней тропосферы (градиентные измерения, содары, лидары), определяющие условия переноса и рассеяния примесей в атмосфере.

Проведенные исследования позволили обосновать радиационную безопасность ряда действующих (Кольская АЭС) и вновь проектируемых АЭС (Ленинградская АЭС-2, Белорусская АЭС, Балтийская АЭС). В ближайшее время планируется применение разработанных программных средств и полученных результатов при разработке проектов АЭС Пакш-2 (Венгрия), Эль-Дабаа (Египет), Нинь-Тхуан (Вьетнам).

<u>Апробация результатов</u>. Материалы диссертации докладывались на 15-ти российских и международных конференциях, в частности:

- Всероссийской научно-практической конференции с международным участием «Ядерная, радиационная безопасность и нераспространение (ЯРБН-2010)» (Новоуральск, Россия, 1 3.12.2010 г.);
- VII, VIII и IX международной научно-технической конференции «Обеспечение безопасности АЭС с ВВЭР» (МНТК-7, 8 и 9) (Подольск, Россия, 17 20.05.2011 г., 28 31.05.2013 г., 19 22 мая 2015 г.);
- Научной конференции «50 лет общегосударственной радиометрической службе» (Обнинск, Россия, 31.05 2.06.2011 г.);
- VI международной научной конференции «Экологические и гидрометеорологические проблемы больших городов и промышленных зон (ЭКОГИДРОМЕТ-2012)» (Санкт-Петербург, Россия, 2 4.07.2012 г.);
- Международной научной конференции «Интеграция, партнерство и инновации в строительной науке и образовании» (Москва, Россия, 17 19.10.2012 г.);
- Международной конференции по радиоактивности и радиационной защите (ICRPP) (Мадрид, Испания, 28 29.03.2013 г.);
- V международной научно-технической конференции молодых ученых и специалистов атомной отрасли «КОМАНДА 2013» (Санкт-Петербург, Россия, 3 7.06.2013 г.);
- 21-ом симпозиуме по пограничным слоям и турбулентности (AMS 21BLT) (Лидс, Великобритания, 9-13.06.2014 г.);
- IV международной научно-практической конференции "Академическая наука проблемы и достижения" (Северный Чарльстон, США, 7 8.07.2014 г.);
- IV международной конференции «Современные концепции научных исследований» (Москва, Россия, 25.07.2014 г.);
- VII международной научно-практической конференции «Научное обозрение физико-математических и технических наук в XXI веке» (Москва, Россия, 29.07.2014 г.);
- X юбилейной российской научной конференции «Радиационная защита и радиационная безопасность в ядерных технологиях» (Москва, Россия, 22 25.09.2015 г.);
- Международном совещании «Реализация проектов АЭС нового поколения. Совершенствование реакторных установок. Обращение с РАО и ОЯТ. Техническое обслуживание и ремонт» (Загреб, Хорватия, 11 16.09.2012 г.).

По теме диссертации имеется 17 публикаций, в том числе 3 работы – в рецензируемых журналах из Перечня ВАК, а также приравниваемые к публикациям 2 авторских свидетельства на программы для ЭВМ.

<u>Личный вклад автора</u>. Личный вклад автора состоит в формулировке задач работы, разработке и практической реализации позиций, выносимых на защиту, тестировании и верификации расчетных моделей, а также апробации их применительно к обоснованию радиационной безопасности вновь проектируемых АЭС-2006 (Ленинградская АЭС-2, Балтийская АЭС, Белорусская АЭС).

Диссертация соответствует специальности 25.00.30 – Метеорология, климатология, агрометеорология.

Диссертация Харченко Е.В. «Использование математических моделей переноса и рассеяния радионуклидов в атмосфере для управления рисками на стадии проектирования атомных электростанций» рекомендуется к защите на соискание ученой степени кандидата физико-математических наук по специальности 25.00.30 - Метеорология, климатология, агрометеорология.

Заключение принято на научном семинаре кафедры климатологии и охраны атмосферы. Присутствовало на заседании 18 чел. Результаты голосования: «За» - 18, «Против» - нет, «Воздержалось» - нет, протокол №4 от «20» ноября 2015 г.

Председатель научного семинара

Е.С. Попова

Секретарь

М.Е. Баранова